News

Researchers at the National Institute of Standards and Technology (NIST) in Boulder, CO, have demonstrated multiple computing operations on quantum bits--a crucial step toward building a practical quantum computer.

Precise control of quantum effects is vital to the realization of entirely new technologies. For example, a computer based on quantum physical principles is expected to outperform today's classical computers. In communication technology, quantum devices are already commercially available which allow secure transmission of data. Controlling the properties of photons down to the quantum level is at the heart of these technologies. In recent years, scientists in the group of Prof.

Single atoms have been spotted doing the quantum version of the random walk by physicists in Germany. This sighting of a “quantum walk” could help in the design of quantum search algorithms, or in the understanding of the transition from the quantum, microscopic world to the classical, macroscopic world.

The QI group at the University of Leeds is launching a new taught MSc programme in Quantum Technologies this year.

Quantum Information Theory is the study of information-processing tasks such as storage and transmission of information, or manipulation of entanglement, using quantum-mechanical systems. Until very recently, the study of these processes was limited to the case in which the required resources, e.g. information sources, communication channels or entanglement resources, were assumed to be available for an infinite number of independent uses.

QD Vision, based in Watertown, MA, is promoting a new LED-based lamp that it made with Nexxus Lighting of Charlotte, NC. Nexxus makes a lamp designed to screw into standard sockets used in recessed ceiling lighting. It consists of an array of white-light LEDs encircled by fins that remove excess heat. QD Vision adds an optic--a plastic cover with a special coating that snaps into place over the LEDs. It's that coating that makes the difference in the quality of the light.

A team of physicists from Austria has sent pairs of entangled photons, which can be used to encrypt messages with complete security, between telescopes spaced 144km apart in the Canary Islands. The researchers say that preserving entanglement over this distance shows the feasibility of carrying out quantum cryptography using a worldwide network of satellites.

Researchers at the National Institute of Standards and Technology (NIST) have proved, for the first time, that the lifetime of quantum-computing bits can be extended. In their experiment, they showed that by applying specially timed magnetic pulses to qubits, made of beryllium ions, they could prolong the life of the quantum bits from about one millisecond to hundreds of milliseconds. The work is described in this week's Nature.

The realization of a universal quantum computer that can carry out arbitrary computations remains a long term goal. But the technologies developed so far enable us to perform so called quantum simulations. Here assemblies of directly controllable quantum particles form models for complex systems which are difficult to manipulate. A new, promising technique was now developed in the group of Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching.

The intrinsic rotation of electrons - the "spin" - remains unused by modern electronics. If use as an information carrier were possible, the processing power of electronic components would suddenly increase to a multiple of the present capacity. In cooperation with colleagues from Dortmund, St. Petersburg and Washington, Bochum physicists have now succeeded in aligning electron spin, bringing it to a controlled "waver" and reading it out. The electron spin can also be realigned as required at any time using optical pulses.