{|border="0" cellpadding="5" cellspacing="0"
|
|
|-
| colspan=2|'''11. Algorithms'''
|-
|
|
|-
|'''11.10.+c'''
|'''Quantum complexity theory'''
|-
|'''11.20.+a'''
|'''Role of entanglement in quantum algorithms'''
|-
|'''11.30.+h'''
|'''Factoring, hidden subgroup'''
|-
|'''11.40.+s'''
|'''Quantum search'''
|-
|'''11.50.+m'''
|'''Quantum maps, quantum chaos'''
|-
|'''11.60.+g'''
|'''Quantum games, strategies'''
|-
|'''11.70.+w'''
|'''Quantum random walks'''
|-
|'''11.80.+e'''
|'''Spectral evaluation'''
|-
|'''11.90.+m'''
|'''Quantum template matching'''
|-
|'''11.95.+o'''
|'''Other algorithms'''
|-
|
|
|-
| colspan=2|'''12. Simulations'''
|-
|
|
|-
|'''12.10.+i'''
|'''Simulations of many-body interactions'''
|-
|'''12.20.+h'''
|'''Optimal simulation of few-qubit Hamiltonians'''
|-
|'''12.30.+u'''
|'''Universal quantum simulators with specific systems (e.g. trapped ions, optical lattices, etc.)'''
|-
|'''12.40.+e'''
|'''Efficient classical simulation of quantum computations'''
|-
|
|
|-
| colspan=2|'''13. Defeating errors'''
|-
|
|
|-
|'''13.10.+n'''
|'''Effects of noise and imperfections'''
|-
|'''13.20.+e'''
|'''Quantum error correction'''
|-
|'''13.30.+t'''
|'''Fault-tolerant quantum computation'''
|-
|'''13.40.+d'''
|'''Decoherence-free subspaces / noiseless subsystems'''
|-
|'''13.50.+d'''
|'''Dynamical / algebraic decoupling / recoupling'''
|-
|'''13.60.+p'''
|'''Geometric / topological protection'''
|-
|'''13.70.+f'''
|'''Quantum feedback / filtering and control'''
|-
|'''13.80.+a'''
|'''Errors and chaos'''
|-
|
|
|-
| colspan=2|'''14. Models and Architectures'''
|-
|
|
|-
|'''14.10.+c'''
|'''Quantum circuit model'''
|-
|'''14.20.+a'''
|'''Quantum cellular automata'''
|-
|'''14.30.+t'''
|'''Quantum Turing machine'''
|-
|'''14.35.+i'''
|'''Initialization of quantum registers'''
|-
|'''14.40.+m'''
|'''Measurement-based quantum computation'''
|-
|'''14.50.+a'''
|'''Adiabatic quantum computation'''
|-
|'''14.60.+g'''
|'''Geometric/topological and holonomic quantum computation'''
|-
|'''14.70.+p'''
|'''Post-selected quantum computation'''
|-
|'''14.80.+f'''
|'''Quantum computation with fixed couplings'''
|-
|'''14.90.+l'''
|'''Quantum computation with limited local control'''
|-
|'''14.95.+p'''
|'''Probabilistic quantum computation'''
|-
|
|
|-
| colspan=2|'''15. Implementations: Quantum Optics'''
|-
|
|
|-
|'''15.10.-p'''
|'''Quantum Optics: Physical qubits'''
|-
|15.10.El
|Electrons
|-
|15.10.Ie
|Ions: electronic states
|-
|15.10.Iv
|Ions: vibrational states
|-
|15.10.Ne
|Neutral atoms: electronic states
|-
|15.10.Nv
|Neutral atoms: vibrational states
|-
|15.10.Ry
|Rydberg atoms
|-
|15.10.Ph
|Photons
|-
|15.10.Qd
|Quantum dots
|-
|15.10.En
|Atomic ensembles
|-
|15.10.Mo
|Molecules
|-
|'''15.20.-e'''
|'''Quantum Optics: Experimental systems'''
|-
|15.20.Pt
|Penning traps (planar and circular)
|-
|15.20.Lp
|Linear Paul traps
|-
|15.20.Ml
|Micro-fabricated lithographic traps
|-
|15.20.Ol
|Optical lattices
|-
|15.20.Mc
|Magnetic atom chips
|-
|15.20.Oc
|Optical atom chips
|-
|15.20.Lo
|Linear optics
|-
|15.20.Ca
|Cavity QED
|-
|15.20.Ro
|Readout techniques in quantum optics
|-
|
|
|-
| colspan=2|'''16. Implementations: condensed matter'''
|-
|
|
|-
|'''16.10.-p'''
|'''Condensed Matter: Physical qubits'''
|-
|16.10.Ec
|Electrons in solids: charge
|-
|16.10.Es
|Electrons in solids: spin
|-
|16.10.Sc
|Spin chains
|-
|16.10.Is
|Ions in solids
|-
|16.10.Ns
|Nuclear spins
|-
|16.10.Jn
|Josephson nanodevices
|-
|16.10.Ex
|Excitons
|-
|16.10.Po
|Polaritons
|-
|'''16.20.-e'''
|'''Condensed Matter: Experimental system'''
|-
|16.20.De
|Electrically realized quantum dots
|-
|16.20.Db
|Band-gap modulation quantum dots
|-
|16.20.Sr
|Electron spin resonance
|-
|16.20.Re
|Rare-earth-ion-doped crystals
|-
|16.20.Ln
|Liquid NMR
|-
|16.20.Pd
|Atomic donors in semiconductor substrates
|-
|16.20.Ec
|Endohedral C60 on surfaces
|-
|16.20.Ih
|Isotopically engineered heterostructures
|-
|16.20.Ns
|QD nuclear spin ensembles
|-
|16.20.Cq
|Charge qubits
|-
|16.20.Pq
|Phase qubits
|-
|16.20.Fq
|Flux qubits
|-
|16.20.Sq
|Superconducting qubits coupled to resonators
|-
|16.20.Cp
|Cooper pair box
|-
|16.20.Dc
|Defect centers in diamonds
|-
|16.20.Rc
|Readout techniques in condensed matter
|-
|
|
|-
| colspan=2|'''17. Other implementations'''
|-
|
|
|-
|'''17.10.+n'''
|'''Nanotubes and nanowires'''
|-
|'''17.20.+m'''
|'''Single-domain magnetic particles'''
|-
|'''17.30.+e'''
|'''Electrons on helium films'''
|-
|'''17.40.+d'''
|'''Molecular spin / dipole arrays'''
|-
|'''17.50.+h'''
|'''Quantum Hall systems'''
|-
|'''17.60.+r'''
|'''Nanomechanical resonators'''
|-
|'''17.70.+s'''
|'''Spectral hole burning'''
|-
|'''17.80.+h'''
|'''Hybrid systems'''
|-
|'''17.90.+s'''
|'''Surface-acoustic-wave-based quantum computer'''
|-
|
|
|-
| colspan=2|'''18. Decoherence Studies'''
|-
|
|
|-
|'''18.10.+b'''
|'''System-bath interaction (harmonic bath, spin bath)'''
|-
|'''18.20.+s'''
|'''Electron spins in semiconductors (phonons, nuclear spins)'''
|-
|'''18.30.+a'''
|'''Atoms close to surfaces / in laser fields or cavities'''
|-
|'''18.40.+n'''
|'''Electromagnetic noise on trapped ions'''
|-
|'''18.50.+p'''
|'''Electric and phonon noise in semiconductors'''
|-
|'''18.60.+d'''
|'''Disentanglement via dissipation / dephasing'''
|-
|'''18.70.+s'''
|'''Decoherence in solid state systems'''
|-
|'''18.80.+d'''
|'''Quantum dissipation systems'''
|-
|-
|}
[[Category: ERA Quantiki Project]]