Physicists assemble spin ensemble


James Dacey writes at PhysicsWorld: ''An international research group claims to have taken an essential step towards silicon-based quantum computing by entangling 10 billion identical quantum bits, or "qubits", inside a silicon crystal. This is the first time that "ensemble entanglement" has been demonstrated in a solid-state device, they claim. Where conventional computers store data as "bits" with value 1 or 0, in quantum computing data is stored as "qubits", which can hold more than one value at the same time. Qubits are quantum states stored in photons or particles that can become "entangled" with other quantum states, allowing them to transfer information instantaneously regardless of their separation distance.The upshot is that quantum computers could potentially store and process huge amounts of data at unprecedented speeds. This could enable them to tackle problems beyond the scope of even the most powerful modern computers, including simulating complicated biological processes and strange phenomena from the quantum world itself.''