Post date:
Dates:
Web page:
Submission deadline:
Location:
http://cc.ee.ntu.edu.tw/~beyondiid9/
"Beyond IID in Information Theory" started as a workshop in Cambridge, UK in 2013, as a forum for the growing interest in information-theoretic problems and techniques beyond the strict asymptotic limit, and aimed at bringing together researchers from a range of different backgrounds, ranging from coding theory, Shannon theory in the finite block length regime, one-shot information theory, cryptography and quantum information, all the way to quantum thermodynamics and other resource theories.
Quantum Shannon theory is arguably the core of the new “physics of information,” which has revolutionized our understanding of information processing by demonstrating new possibilities that cannot occur in a classical theory of information. It is also a very elegant generalization of Shannon's theory of classical communication. The origins of quantum Shannon theory lie in the 1960s, with a slow development until the 1990s when the subject exploded; the last 10-25 years have seen a plethora of new results and methods.
In recent years, both in classical and quantum Shannon theory, attention has shifted from the strictly asymptotic point of view towards questions of finite block length. For this reason, and fundamentally, there is a strong drive to establish the basic protocols and performance limits in the one-shot setting. This one-shot information theory requires the development of new tools, in particular non-standard entropies and relative entropies (min-, Rényi-, hypothesis testing), both in the classical and quantum settings. These tools have found numerous applications, ranging from cryptography to strong converses, to second and third order asymptotics of various source and channel coding problems. A particularly exciting set of applications links back to physics, with the development of a resource theory of thermodynamic work extraction and, more generally, of state transformations. Physicists have furthermore found other resource theories, for instance, that of coherence and that of asymmetry, which are both relevant to the thermodynamics of quantum systems and interesting in their own right.
The whole area is extremely dynamic, as the success of previous "Beyond IID" workshops has shown.
Description:
The present workshop will bring together specialists and students interested in all areas of classical and quantum information theory, including cryptography, mathematical physics, thermodynamics, and related areas, in the hope to exchange ideas and foster collaboration in one-shot information theory and its applications. The plan is to have a modest number of talks over the course of the week. Participation is open to all.
Topics:
The topics covered under "Beyond IID" include but are not limited to the following:
• Finite block length coding
• Second, third and fourth order analysis
• Strong converses
• Quantum Shannon theory
• Cryptography and quantum cryptography
• New information tasks
• One-shot information theory and unstructured channels
• Information spectrum method
• Entropy inequalities
• Non-standard entropies (e.g. Rényi entropies, min-entropy, ...)
• Matrix analysis
• Thermodynamics
• Quantum resource theories
• Physics of information
Important dates (AoE, anywhere on earth):
• Submission Deadline: July 31, 2021
• Notification of Accepted Talks: Aug 31, 2021
• Conference Dates: Sep 27 - Oct 01, 2021 (online event on Zoom)
Invited Talks/speakers:
1. Varun Jog, University of Cambridge, UK
2. Daniel Stilck França and Raul Garcia-Patron. Limitations of optimization algorithms on noisy quantum devices. [arXiv:2009.05532]
3. Arne Heimendahl, Markus Heinrich, David Gross. The axiomatic and the operational approaches to resource theories of magic do not coincide. [arXiv:2011.11651]
4. Cheuk Ting Li, The Chinese University of Hong Kong
5. Euijung Chang, Jaeyoung Kim, Hyesun Kwak, Hun Hee Lee, Sang-Gyun Youn (speaker). Irreducibly SU(2)-covariant quantum channels of low rank. [arXiv:2105.00709]
Submission format
There is no strict format for the submission. However, the authors have to provide at least a 3-page extended abstract if the full paper is not available at the time of submission. All submissions must be made electronically through the online submission system EasyChair: https://easychair.org/conferences/?conf=biid9.
We also solicit poster-only submissions.
Please direct any questions or comments to the PC chair at biid9@easychair.org
Program committee:
Matthew Aldridge (University of Leeds)
Mario Berta (Imperial College London/AWS)
Alex Dytso (New Jersey Institute of Technology)
Omar Fawzi (Inria, ENS Lyon)
Min-Hsiu Hsieh (Hon Hai Quantum Computing Research Center)(Chair)
Felix Leditzky (UIUC)
Li Gao (Technical University of Munich)
Bartosz Regula (NTU Singapore)
Jonathan Scarlett (NUS Singapore)
Eyuri Wakakuwa
Shun Watanabe (Tokyo University of Agriculture and Technology)
Steering committee:
Holger Boche (Technische Universität München)
Nilanjana Datta (University of Cambridge)
Serge Fehr (CWI & Leiden University)
Masahito Hayashi (Graduate School of Mathematics, Nagoya University)
Min-Hsiu Hsieh (Hon Hai Quantum Computing Research Center)
Oliver Johnson (University of Bristol)
Ioannis Kontoyiannis (University of Cambridge)
Vincent Y. F. Tan (National University of Singapore)
Mark M. Wilde (Louisiana State University)