Welcome to Quantiki

Welcome to Quantiki, the world's leading portal for everyone involved in quantum information science. No matter if you are a researcher, a student or an enthusiast of quantum theory, this is the place you are going to find useful and enjoyable! While here on Quantiki you can: browse our content, including fascinating and educative articles, then create your own account and log in to gain more editorial possibilities.

Add new content, such as information about upcoming quantum events, open positions for quantum scientists and existing quantum research groups. We also encourage to follow us using social media sites.

Slashdot has an article about the withdrawal of an article by Jonathan Oppenheim and co-authors from Physical Review Letters because they had asked for a rights agreement compatible with GFDL which Quantiki uses for its content.

The Canadian Quantum Information Summer School has become an annual Canadian tradition and welcomes students from all over the world. The Eighth installment aims to introduce the participants to quantum algorithms, quantum error correction, quantum information theory and quantum cryptography. They will also receive lectures on implementations, quantum complexity theory, nonlocality and some more recent developments in quantum algorithms, namely quantum walks.

The Summer School is being held at the Université de Montréal in Montreal, Quebec, Canada from June 9 to 13, 2008.

One of the problems plaguing classical communication is associated with what is known as the Byzantine agreement. In this problem, messages between three different parties are subject to faulty information. Quantum communication, though, has held the promise of solving this dilemma. But until now, it has been difficult to do so, even using entangled states.

ERATO-SORST Quantum Computation and Information Project invites applications for post-doctoral positions to conduct theoretical research on quantum computation and information science, including quantum cryptography, quantum algorithm, quantum communication, and other fundamental topics on quantum information, or to conduct experimental research on quantum information with photons.

An atomic clock that uses an aluminium atom to apply the logic of computers to the peculiarities of the quantum world now rivals the world's most accurate clock, based on a single mercury atom. Both clocks are at least 10 times more accurate than the current U.S. time standard.

Pages

Subscribe to Quantiki RSS