Job type:
Application deadline:
Employer web page:
Rayleigh's criterion defines the minimum resolvable distance between two incoherent point sources as the diffraction-limited spot size. Enhancing the resolution beyond this limit has been a crucial outstanding problem for many years. A number of solutions have been realized; however, all of them so far relied either on near-field or nonlinear-optical probing, which makes them invasive, expensive and not universally applicable. It would therefore be desirable to find an imaging technique that is both linear-optical and operational in the far-field regime. A recent theoretical breakthrough demonstrated that "Rayleigh's curse" can be resolved by coherent detection the image in certain transverse electromagnetic modes, rather than implementing the traditional imaging procedure, which consists in measuring the incoherent intensity distribution over the image plane. To date, there exist proof-of-principle experimental results demonstrating the plausibility of this approach. The objective of the project is to test this approach in a variety of settings that are relevant for practical application, evaluate its advantages and limitations. If successful, it will result in a revolutionary imaging technology with a potential to change the faces of all fields of science and technology that involve optical imaging, including astronomy, biology, medicine and nanotechnology, as well as optomechanical industry.
Recent results from this project are published in https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.253602
Apply via
https://my.corehr.com/pls/uoxrecruit/erq_jobspec_version_4.display_form?...
Address questions to Alex.Lvovsky[at]physics.ox.ac.uk