Pauli group

'''Pauli group''' \mathcal{P}_n for n qubits is the group consisting of n-fold tensor products of Pauli matrices I, X, Y, and Z I=\begin{pmatrix}1&0\\0&1\end{pmatrix}, X=\begin{pmatrix}0&1\\1&0\end{pmatrix}, Y=\begin{pmatrix}0&-i\\i&0\end{pmatrix}, Z=\begin{pmatrix}1&0\\0&-1\end{pmatrix} . along with multiplicative factors \pm 1, \pm i with matrix multiplication as a group operation. NielsenChuang In particular for one qubit system we have \mathcal{P}_1 = \left\{ \pm I, \pm i I, \pm X, \pm i X, \pm Y, \pm i Y, \pm Z, \pm i Z \right\} . [[Category:Mathematical Structure]]