PPT criterion

An important example of separability criteria via PnCP maps is the PPT criterion, as stated in the following theorem:

If a state πœšβ€„βˆˆβ€„SAβ€…βŠ—β€…SB is separable, then 𝜚TB := (idAβ€…βŠ—β€…TB)[𝜚] β‰₯ 0, where β€…TB is the transposition on the second subsystem of the compound system SAβ€…βŠ—β€…SB.

Therefore if 𝜚TB := (idAβ€…βŠ—β€…TB)[𝜚] is nonpositive, the state 𝜚 is entangled.

In arbitrary dimensions of the two subsystems the PPT criterion provides only a necessary but not sufficient condition for separability, i.e. in "high" dimensions there exist states that remain positive under partial transposition (PPT states) even if they are entangled.

If instead the bipartite system has dimension dAdB ≀ 6, i.e. the bipartite system is of the type 2β€…βŠ—β€…2 or 2β€…βŠ—β€…3 or 3β€…βŠ—β€…2, then the PPT criterion provides a necessary and sufficient condition for separability, as follows.

Theorem: A state 𝜚ABβ€„βˆˆβ€„SAβ€…βŠ—β€…SB with dAdB ≀ 6 is separable if and only if 𝜚ABTB := (idAβ€…βŠ—β€…TB)[𝜚AB] β‰₯ 0, i.e. if and only if 𝜚AB is PPT.

  • A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77(8), 1413 (1996).
  • M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A 223, 1 (1996).

Category:Entanglement Category:Handbook of Quantum Information

Last modified: 

Monday, October 26, 2015 - 17:56