Error message
- Deprecated function: TYPO3\PharStreamWrapper\Manager::initialize(): Implicitly marking parameter $resolver as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::initialize(): Implicitly marking parameter $collection as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::__construct(): Implicitly marking parameter $resolver as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::__construct(): Implicitly marking parameter $collection as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: UpdateQuery::expression(): Implicitly marking parameter $arguments as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
- Deprecated function: MergeQuery::expression(): Implicitly marking parameter $arguments as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
Mathematics of Disordered Quantum Systems and Matrices Group (Institute of Science and Technology Austria)
Submitted by:
Submitted by
tzauner on Mon, 07/03/2022 - 10:11.
Short name:
Disordered System Group (ISTA)
How do energy levels of large quantum systems behave? What do the eigenvalues of a typical large matrix look like? Surprisingly, these two very different questions have the same answer!
Large complex systems tend to develop universal patterns that often represent their essential characteristics. A pioneering vision of Eugene Wigner was that the distribution of the gaps between energy levels of complicated quantum systems depends only on the basic symmetry of the model and is otherwise independent of the physical details. This thesis has never been rigorously proved for any realistic physical system but experimental data and extensive numerics leave no doubt as to its correctness. Erdos’ group took up the challenge to verify Wigner’s vision with full mathematical rigor as well as to understand the underlying mechanism. Starting from the simplest model, a large random matrix with independent identically distributed entries, they are now able to deal with arbitrary distributions and even matrices with correlated entries. The mathematical ideas and tools developed along the way will extend the scope of random matrix theory and are likely to be used in its many applications beyond quantum physics such as wireless communications and statistics.