Post date:
Acronym:
Web page:
Date/time: Tue. 26th Nov. 3pm GMT/UTC
Speaker: Mark Wilde (Louisiana State University)
Title: Strong Converse Theorems in Quantum Information Theory
Abstract: One of the main goals in quantum information theory is to establish the capacity of a quantum channel for communicating various kinds of information, whether it be bits or qubits. While several communication capacities of quantum channels are now known, the characterization of capacity in many of these cases is often limited to it being a threshold that determines the rates at which reliable communication is or is not possible. While this characterization might be satisfactory for some purposes, it leaves open the possibility for a trade-off between communication rate and error probability (that is, one might think that it would be possible to send data at a higher rate by allowing for errors to occur some of the time). However, we now know that such a trade-off is not possible for many channels and capacities of interest. That is, many researchers have now established that a strong converse theorem holds for several channels and capacities, so that as soon as the communication rate exceeds capacity, it is guaranteed that the error probability converges to one in the limit of large blocklength, no matter what strategy the sender and receiver employ. These strong converse theorems strengthen the interpretation and our understanding of capacity as a very sharp dividing line between rates for which asymptotically perfect communication is possible and rates for which an error is guaranteed to occur (analogous to a phase transition in statistical physics). This Q+ talk will review much of the progress in establishing strong converse theorems for several channels and their communication capacities in quantum information theory.
Joint work with Bhaskar Roy Bardhan (LSU Baton Rouge), Manish K. Gupta (LSU Baton Rouge), Naresh Sharma (TIFR Mumbai), Dong Yang (UAB Barcelona), and Andreas Winter (UAB Barcelona).
To watch the talk live, go to http://gplus.to/qplus at the appointed hour. To stay up to date on the latest news about Q+ hangouts you can follow us on:
Google+: http://gplus.to/qplus
Twitter: @qplushangouts
Facebook: http://facebook.com/qplushangouts
or visit our website http://qplus.burgarth.de
- 772 reads