Welcome to Quantiki

Welcome to Quantiki, the world's leading portal for everyone involved in quantum information science. No matter if you are a researcher, a student or an enthusiast of quantum theory, this is the place you are going to find useful and enjoyable! While here on Quantiki you can: browse our content, including fascinating and educative articles, then create your own account and log in to gain more editorial possibilities.

Add new content, such as information about upcoming quantum events, open positions for quantum scientists and existing quantum research groups. We are also distributing news via X (Twitter) feed, Bluesky news feed, and LinkedIn profile. We encourage you to follow us on social media to get the recent news from quantum infromation community.

Researchers at the National Institute of Standards and Technology (NIST) in Boulder, CO, have demonstrated multiple computing operations on quantum bits--a crucial step toward building a practical quantum computer.

Professor (W2) in Theoretical Physics

The successful candidate is expected to do research in quantum information theory, the dynamics of large complex quantum systems, or the space-time aspects of quantum dynamics.

The position will be based at the Institute for Theoretical Physics, and is associated with the research cluster QUEST (Centre for Quantum Engineering and Space-Time Research).
Close collaboration with QUEST and with the quantum information group of R. F. Werner is expected.

Screening will begin on September 15th.

A PhD studentship in Theoretical Condensed Matter Physics/Semiconductor Optics is available in the School of Physics at Trinity College Dublin, in the area of many-body phenomena in coupled light-matter systems (such as quantum dots and semiconductor microcavities). The project will explore many-particle effects in decoherence, using radiatively coupled quantum dots as a model system.

Precise control of quantum effects is vital to the realization of entirely new technologies. For example, a computer based on quantum physical principles is expected to outperform today's classical computers. In communication technology, quantum devices are already commercially available which allow secure transmission of data. Controlling the properties of photons down to the quantum level is at the heart of these technologies. In recent years, scientists in the group of Prof.

ArXiv identifier: 

0906.2731

Speakers: 

Masaki Owari

Authors: 

Miguel Navascues, Masaki Owari, Martin B. Plenio

In this paper, we present new progress on the study of the symmetric extension criterion for separability. First, we show that a perturbation of order O(1/N) is sufficient and, in general, necessary to destroy the entanglement of any state admitting an N Bose symmetric extension. On the other hand, the minimum amount of local noise necessary to induce separability on states arising from N Bose symmetric extensions with Positive Partial Transpose (PPT) decreases at least as fast as O(1/N^2).

Single atoms have been spotted doing the quantum version of the random walk by physicists in Germany. This sighting of a “quantum walk” could help in the design of quantum search algorithms, or in the understanding of the transition from the quantum, microscopic world to the classical, macroscopic world.

The QI group at the University of Leeds is launching a new taught MSc programme in Quantum Technologies this year.

The Department of Applied Mathematics at H.I.T. – Holon Institute of Technology (Holon, Israel) invites applications for a postdoctoral position in Mathematical Physics. The successful candidate is expected to be involved into a research at the crossroad of the Random Matrix Theory, Quantum Chaotic Systems, and the Theory of Integrable Hierarchies. Previous research record in one of those fields is an advantage, strong analytical skills is a must.

Quantum Information Theory is the study of information-processing tasks such as storage and transmission of information, or manipulation of entanglement, using quantum-mechanical systems. Until very recently, the study of these processes was limited to the case in which the required resources, e.g. information sources, communication channels or entanglement resources, were assumed to be available for an infinite number of independent uses.

Pages

Subscribe to Quantiki RSS