Welcome to Quantiki

Welcome to Quantiki, the world's leading portal for everyone involved in quantum information science. No matter if you are a researcher, a student or an enthusiast of quantum theory, this is the place you are going to find useful and enjoyable! While here on Quantiki you can: browse our content, including fascinating and educative articles, then create your own account and log in to gain more editorial possibilities.

Add new content, such as information about upcoming quantum events, open positions for quantum scientists and existing quantum research groups. We also encourage to follow us using social media sites.

The intrinsic rotation of electrons - the "spin" - remains unused by modern electronics. If use as an information carrier were possible, the processing power of electronic components would suddenly increase to a multiple of the present capacity. In cooperation with colleagues from Dortmund, St. Petersburg and Washington, Bochum physicists have now succeeded in aligning electron spin, bringing it to a controlled "waver" and reading it out. The electron spin can also be realigned as required at any time using optical pulses.

ArXiv identifier: 

0901.4454

Speakers: 

Martin Plenio

Authors: 

Filippo Caruso, Alex W. Chin, Animesh Datta, Susana F. Huelga, Martin B. Plenio

Transport of excitations through networked systems plays an important role in many areas of physics, chemistry, and biology. The uncontrollable interaction of the transmission network with a noisy environment is usually assumed to deteriorate its transport capacity, especially so when the system is fundamentally quantum mechanical. Here we identify key mechanisms through which dephasing noise, contrary to expectation, may actually aid transport through a dissipative network.

ArXiv identifier: 

0903.0612

Speakers: 

Daniel Burgarth

Authors: 

Daniel Burgarth, Koji Maruyama

Identifying the nature of interactions in a quantum system is essential in understanding any physical phenomena. Acquiring information on the Hamiltonian can be a tough challenge in many-body systems because it generally requires access to all parts of the system. We show that if the coupling topology is known, the Hamiltonian identification is indeed possible indirectly even though only a small gateway to the system is used. Surprisingly, even a degenerate Hamiltonian can be estimated by applying an extra field to the gateway.

ArXiv identifier: 

0807.2444

Speakers: 

Alvaro Feito Boirac

Authors: 

J.S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K.L. Pregnell, Ch. Silberhorn, T.C. Ralph, J. Eisert, M.B. Plenio, I.A. Walmsley

Measurement connects the world of quantum phenomena to the world of classical events. It plays both a passive role, observing quantum systems, and an active one, preparing quantum states and controlling them. Surprisingly - in the light of the central status of measurement in quantum mechanics - there is no general recipe for designing a detector that measures a given observable. Compounding this, the characterization of existing detectors is typically based on partial calibrations or elaborate models. Thus, experimental specification (i.e.

We are pleased to inform that Quantiki has a new functionality. We introduce Quantiki Video Abstracts - a place where you can upload video abstracts of your papers. If you want to promote your paper just make a short video in which you introduce it and upload it on Quantiki and share it with Quantum Information community. You can also subscribe YouTube channel with Quantiki video abstracts.

Pages

Subscribe to Quantiki RSS