Welcome to Quantiki
Welcome to Quantiki, the world's leading portal for everyone involved in quantum information science. No matter if you are a researcher, a student or an enthusiast of quantum theory, this is the place you are going to find useful and enjoyable! While here on Quantiki you can: browse our content, including fascinating and educative articles, then create your own account and log in to gain more editorial possibilities.
Add new content, such as information about upcoming quantum events, open positions for quantum scientists and existing quantum research groups. We also encourage to follow us using social media sites.
Submitted by
Editor on Tue, 10/03/2009 - 15:09.
Scientists in the UK and US have shown how to increase photovoltaic efficiencies by attaching nanocrystal quantum dots to patterned semiconductor layers. The approach exploits the phenomenon of non-radiative energy transfer and could, say the researchers, lead to a new generation of more efficient solar cells.
HP Labs - Post-Doctoral Researcher in Experimental QKD
The Quantum Information Processing (QIP) Group is based in HP Labs Bristol UK, and is part of the Information and Quantum Systems Laboratory (IQSL). The QIP group is seeking applicants for a fixed-term research appointment for two years, to work on the next stages of the implementation of "consumer quantum key distribution", HP's most advanced quantum information technology. The appointee will carry out research and development on short-range, free-space QKD for consumer applications.
Submitted by
JMiszczak on Tue, 03/02/2009 - 09:23.
Quantum computation was a highly speculative enterprise facing serious technological obstacles until a shy young physicist came along. Dave Bacon tells the story of Alexei Kitaev’s big idea. Read more at PhysicsWorld.
Submitted by
JMiszczak on Fri, 23/01/2009 - 07:53.
Physicists have teleported quantum information between two atoms separated by a significant distance, for the first time. Until now this feat had only been achieved between photons, and between two nearby atoms through the intermediary action of a third. “Our system has the potential to form the basis for a large-scale ‘quantum repeater’ that can network quantum memories over vast distances” said group leader Christopher Munroe of the University of Maryland.
Submitted by
Burgarth on Wed, 07/01/2009 - 17:53.
We're setting up a small Quantiki Workshop!!! If you're interested in getting to know the team, learning more about how Quantiki works, or would like to contribute and work with us - why don't you come along? It is also a good time to tell us how we could improve Quantiki or develope some new ideas and directions for this international non-profit project. Get back to us through the contact form at the top of this page!
Pages