nanophotonics

A recent discovery has shown that it is possible to confine light at length scales much below the conventional diffraction limit in semiconductors. Previously, this was only considered possible in metals through the excitation of plasmons, which unfortunately are associated with large optical losses. This new discovery opens tremendous possibilities for realizing a new regime of strong light-matter interaction, with important applications in quantum technology as well as the “holy grail” of integrating photonics and electronics.

Are you a talented and ambitious researcher? Are you excited about quantum science and technology? Do you enjoy finding working solutions to great challenges? You are then welcome to apply for an open PhD position on "Multi-Qubit Quantum Photonic Devices" in our group at DTU Fotonik.

Are you a talented and ambitious researcher? Are you excited about quantum science and technology? Do you enjoy finding working solutions to great challenges? You are then welcome to apply for an open Ph.D. position on "Optomechanics with Quantum Emitters" in our group at DTU Fotonik.

We are seeking a highly motivated and enthusiastic researcher with an excellent record of publications in the research areas of quantum optics and nano-photonics. The main goal of the research is to develop nano-structured dielectric metasurfaces for tailored transformation and generation of few-photon entangled quantum states. The project work will involve both experimental investigations and theoretical modelling. The initial term is 1-year, with a potential extension subject to performance and availability of external funding.

The integrated quantum technology group of Prof. Dr. Carsten Schuck is based at the Center for Nanotechnology (CeNTech) on the campus of the University of Münster (Germany). Research activities include the integration of quantum emitters and single-photon detectors with nanophotonic circuitry on silicon chips. The group makes use of a large variety of advanced nano-fabrication techniques, computer-aided design of nanophotonic devices and state-of-the-art measurement capabilities for realizing quantum optics experiments on a scalable platform.

Pages

Subscribe to RSS - nanophotonics