Error message
- Deprecated function: TYPO3\PharStreamWrapper\Manager::initialize(): Implicitly marking parameter $resolver as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::initialize(): Implicitly marking parameter $collection as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::__construct(): Implicitly marking parameter $resolver as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::__construct(): Implicitly marking parameter $collection as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: UpdateQuery::expression(): Implicitly marking parameter $arguments as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
- Deprecated function: MergeQuery::expression(): Implicitly marking parameter $arguments as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
We theoretically study non-equilibrium dynamics of complex quantum systems, focussing on ultra cold gases near 0K temperature, highly excited Rydberg atoms, opto-mechanical devices and hybrid assemblies of these.
Submitted by
Ferlaino on Sun, 18/04/2021 - 12:07.
Application deadline:
Friday, December 31, 2021
Experimental Postdoc position on quantum simulation with dipolar quantum gases of Erbium atoms (Univ. Innsbruck & IQOQI)
In this project you will create dipolar Fermi and Bose gases of Erbium atoms and to use them to study strongly-correlated lattice spin systems and spinor system. Moreover, the newly discover ultra-narrow inner-shell optical transition in Erbium (similar to a clock transition in alkali-earth atoms) will be used to access new regime of control and manipulation for quantum simulation and quantum optics physics.