Welcome to Quantiki

Welcome to Quantiki, the world's leading portal for everyone involved in quantum information science. No matter if you are a researcher, a student or an enthusiast of quantum theory, this is the place you are going to find useful and enjoyable! While here on Quantiki you can: browse our content, including fascinating and educative articles, then create your own account and log in to gain more editorial possibilities.

Add new content, such as information about upcoming quantum events, open positions for quantum scientists and existing quantum research groups. We also encourage to follow us using social media sites.

ArXiv identifier: 



R. F. Werner


V. B. Scholz and R. F. Werner

The situation of two independent observers conducting measurements on a joint quantum system is usually modelled using a Hilbert space of tensor product form, each factor associated to one observer. Correspondingly, the operators describing the observables are then acting non-trivially only on one of the tensor factors. However, the same situation can also be modelled by just using one joint Hilbert space, and requiring that all operators associated to different observers commute, i.e. are jointly measurable without causing disturbance.

Researchers at the National Institute of Standards and Technology (NIST) have proved, for the first time, that the lifetime of quantum-computing bits can be extended. In their experiment, they showed that by applying specially timed magnetic pulses to qubits, made of beryllium ions, they could prolong the life of the quantum bits from about one millisecond to hundreds of milliseconds. The work is described in this week's Nature.

The realization of a universal quantum computer that can carry out arbitrary computations remains a long term goal. But the technologies developed so far enable us to perform so called quantum simulations. Here assemblies of directly controllable quantum particles form models for complex systems which are difficult to manipulate. A new, promising technique was now developed in the group of Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching.


The intrinsic rotation of electrons - the "spin" - remains unused by modern electronics. If use as an information carrier were possible, the processing power of electronic components would suddenly increase to a multiple of the present capacity. In cooperation with colleagues from Dortmund, St. Petersburg and Washington, Bochum physicists have now succeeded in aligning electron spin, bringing it to a controlled "waver" and reading it out. The electron spin can also be realigned as required at any time using optical pulses.


Subscribe to Quantiki RSS