Error message
- Deprecated function: TYPO3\PharStreamWrapper\Manager::initialize(): Implicitly marking parameter $resolver as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::initialize(): Implicitly marking parameter $collection as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::__construct(): Implicitly marking parameter $resolver as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::__construct(): Implicitly marking parameter $collection as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: UpdateQuery::expression(): Implicitly marking parameter $arguments as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
- Deprecated function: MergeQuery::expression(): Implicitly marking parameter $arguments as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
Quantum Nanophotonics Laboratory
Submitted by:
Submitted by
gamote on Mon, 07/03/2022 - 11:16.
The Quantum Nanophotonics Laboratory is led by Ikerbasque Research Professor Gabriel Molina-Terriza. We are a team of scientists endeavoruing to unveil the physics of the interactions of quantum light and matter at the nanoscale. We experiment with exotic states of light such as single photon states, entangled photons or squeezed states of light and force them to interact with very small structures. We aim to control the quantum features of nanoparticles by exploiting their interaction with light. This allows us to design more precise quantum enhanced sensors, improve information processing and above all, pierce through the frontiers of knowledge and excite our curiosity.