Theory and Experiment

The Quantum Information Science and Technology research group is part of the Federal University of ABC (UFABC), Santo André, São Paulo, Brazil. We are a very enthusiastic research group working in São Paulo metropolitan area. We are interested in most aspects of quantum information science including theoretical and experimental investigations. We are part of the joint initiative “Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ)”.

UFABC is a brand new Brazilian public university. Located in the industrial belt of São Paulo – Brazil’s largest city – in an area known as ABC. Founded in 2006, the UFABC already established a reputation for high-level interdisciplinary research and teaching, being top ranked in several aspects.

Research and innovation are also another pillars of the university. The UFABC is considered, in several ranks, the most international university in Brazil. It is also the Brazilian university with bigger publication impact with roughly a quarter of the publications in the 10% more cited publications worldwide, according to the SIR World Report, from the Scimagoir rank.

Location: 
UFABC
Avenida dos Estados, 5001
Santo André
Brazil
23° 38' 40.6212" S, 46° 31' 41.9268" W
BR

Q@TN is a joint initiative of University of Trento, Bruno Kessler Foundation, and National Research Council aimed at coordinating their on-going activities and to start new ones in the field of Quantum Science and Technologies.

Q@TN promotes research projects, technological transfer, education and training.

Research activities are planned in the areas of fundamental quantum science, quantum communications, quantum computing, quantum simulations, future sensors and metrology.

Location: 
University of Trento
Povo - via Sommarive
Trento
Italy
IT
Research type: 
Location: 
University of Toronto
St George St.
Toronto
Canada
CA

We explore light as a tool in classical physics, such as when it can be used to push or pull individual particles (think of where a comet's tail comes from!), or for exploring the dynamics of colloidal particles (such as cells, bacteria, or test spheres), or even light's ability to be used in sensing of very small numbers of particles.

Of course, there's a world beyond the classical and we also consider light's role in quantum physics, where photons can be used to slow down neutral atoms, in a process known as laser-cooling, or combined with magnetic fields to spatially trap and cool atoms in a magneto-optical trap, where temperatures of about 100 microKelvin are routinely obtained in the lab. All of these techniques are crucial in the development of future quantum-based technologies relying on neutral ground state or Rydberg atoms.

In general, we study the interaction between light and matter in a number of regimes, including cold atomic systems, whispering gallery mode microresonators and biologically-relevant samples, to gain a better understanding of the processes involved and to manipulate or trap micron and nanoscaled particles using light fields. A common technique across our work is the use of optical nanofibres as the interface tool between the light source and the sample under investigation. Researchers in our unit need/acquire a huge range of skills from optics, atomic physics, simulations, photonics, electronics, vacuum, cryogenics, nanotechnology, interfacing, programming, and so on, and there are some opportunities to gain skills in biophysics and other interdisciplinary topics such as sensing and imaging. While much of our research focus is fundamental in nature, we use skills that are highly relevant to industry with a focus on nanofabrication, optics, automation, system modelling and control.

Location: 
OIST
1919-1 Tancha
Onna-son
Japan
26° 27' 55.1844" N, 127° 49' 46.8192" E
JP

Inac, a joint CEA-UGA research institute, is a major actor in fundamental research on condensed matter, soft matter and cryogenics in Grenoble.

Most of its activities in physics, chemistry and at the interface with biology are included under the banner of nanoscience. It has programmes in several strategic areas: low carbon energy, information technology, heath technology, global defence and security, development and use of large facilities, cryogenics for space and for large facilities.

Research type: 
Location: 
17, rue des Martyrs
Grenoble
France
45° 11' 45.5928" N, 5° 42' 29.2716" E
FR