Theory and Experiment


Universidade de São Paulo
Rua do Matão 1371
São Paulo
23° 33' 37.3608" S, 46° 44' 4.812" W

The University of Kent has an active research community studying a range of phenomena in theoretical and applied condensed matter physics. The School of Physical Sciences hosts the interdisciplinary Functional Materials Group, with major recent investments in both theory and experiment of correlated quantum matter.

Of particular interest to the quantiki community, several theory groups within the Quantum Materials and Magnetism are working with quantum information methods, including DMRG (groups of Sam Carr and Gunnar Möller), tensor networks (Gunnar Möller) and other entanglement based approaches (group of Jorge Quintanilla). Some overarching themes of our research are: relativistic quantum-mechanical effects (e.g. spin-orbit coupling) in rare earths and superconductors; topological aspects of condensed matter physics; light-matter interactions; ferroic complex oxides and their interfaces; and new quantum phases of matter.
Closely related experimental work is undertaken in the groups of Silvia Ramos (neutron scattering), and Emma Pugh (low temperature, high pressure, high field experiments).


School of Physical Sciences, University of Kent
Ingram Building
United Kingdom
51° 17' 54.456" N, 1° 3' 57.006" E


University of Padova - DEI
v. Gradenigo 6
45° 24' 32.2272" N, 11° 53' 37.194" E

The UK Quantum Technology Hub for Quantum Communications is a synergistic partnership of eight UK Universities (Bristol, Cambridge, Heriot-Watt, Leeds, Royal Holloway, Sheffield, Strathclyde, and York), numerous private sector companies (BT, the National Physical Laboratory, Toshiba Research Europe Ltd, amongst others), and public sector bodies (Bristol City Council and the National Dark Fibre Infrastructure Service), that have come together in a unique collaboration to exploit fundamental laws of quantum physics for the development of secure communications technologies and services.

Led by the University of York, the five-year, £24m QComm Hub aims to deliver quantum encryption systems that will in turn enable secure transactions and transmissions of data across a range of users in real-world applications: from government agencies and industrial set-ups to commercial establishments and the wider public. The project is part of a major national initiative, the UK National Quantum Technologies Programme, which aims to ensure the successful transition of quantum technologies from laboratory to industries.


University of York York
United Kingdom
53° 57' 35.874" N, 1° 5' 14.2728" W

Established by the Danish National Research Foundation (DNRF), the Center for Quantum Devices opened June 1, 2012 in the H.C. Ørsted Institute, bldg. 3, Niels Bohr Institute, University of Copenhagen. This building is also home to the Nano-Science Center.

In addition to being a DNRF 'Center of Excellence', QDev is part of the Condensed Matter Physics group at the Niels Bohr Institute (NBI), which means that several of its staff are permanent faculty members at the NBI, cooperating on the delivery of the physics and nano-science curriculum at the bachelor's and master's level, and contributing to the overall teaching and research aims of the NBI.

Research type: 


University of Copenhagen
Universitetsparken 5 2100
55° 42' 0.306" N, 12° 33' 37.3968" E


Subscribe to RSS - Theory and Experiment