News

Carbon as a razor-thin transparent foil is one of the innovations presented by the "Munich-Centre of Advanced Photonics" (MAP) at the "LASER – World of Photonics" on May 23-26 in Munich. High-power lasers knock out pulsed ion beams out of these foils, which will be used as a low-cost and gentle alternative for cancer therapy in a few years. At the joint booth of the Bavarian Universities (B2.407) MAP and the future "Centre for Advanced Laser Applications" (CALA) present how cancer diagnostics and therapy benefit from the new lasers.

This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to coherent states. The motivation behind this special issue is to gather in a single comprehensive volume the main aspects (past and present), latest developments, different viewpoints and directions being followed in this multidisciplinary field. Given the impressive development of the field in the past two decades, the topicality of such a volume can hardly be overemphasized.

Hamish Johnston writes at PhysicsWorld: ''A small firm based in Canada that aims to build a commercially viable quantum computer has shown that an important part of its technology works. D-Wave Systems, which was spun-out of the University of British Columbia in 1999, has shown that a technique called quantum annealing can be used to make eight coupled quantum bits – or qubits – find their ground state.

Professor Immanuel Bloch, Director at the Max Planck Institute of Quantum Optics and Professor for experimental physics at the Ludwig-Maximilians-Universität Munich, has been elected by the EPS for the “2011 Prize for Fundamental Aspects of Quantum Electronics and Optics”. The award is given to him for his “pioneering work on exploring quantum many-body systems using ultracold quantum gases for quantum simulation and quantum information applications.”
<!--break-->

ID Quantique SA announced the successful completion of the longest running project for testing Quantum Key Distribution (QKD) in a field environment. The main goal of the SwissQuantum network, installed in the Geneva metropolitan area in March 2009, was to validate the reliability and robustness of QKD in continuous operation over a long time period in a field environment. The quantum layer ran stably for nearly 2 years until the completion of the project in January 2011, confirming the viability of QKD as a commercial encryption technology.

John Matson at his Scientific American blog write: ''Quantum information science is a bit like classroom management—the larger the group, the harder it is to keep everything together. But to build a practical quantum computer physicists will need many particles working in synchrony as quantum bits, or quibits. <!--break-->Each qubit can be a 0 and a 1 simultaneously, vaulting the number-crunching power of a hypothetical quantum computer well past that of ordinary computers.

The MIT Press is pleased to announce the publication of Quantum Computing: A Gentle Introduction, by Eleanor Rieffel and Wolfgang Polak.

Scientists in Belgium and Spain have proved for the first time that new systems of quantum cryptology are much safer than current security systems.

The most accurate quantum measurements possible are made using an interferometer, which exploits the wave nature of matter and light. In this method, two identical beams of particles are sent along different paths to a detector, with one interacting with an object of interest along the way. Recombining the beams afterwards creates an interference pattern that reflects how much the interacting beam was disturbed -providing details about the object's properties.

Scientists of the Institute for Quantum Optics and Quantum Information (IQOQI) in Innsbruck, Austria, have reached a milestone in the exploration of quantum gas mixtures. In an international first, the research group led by Rudolf Grimm and Florian Schreck has succeeded in producing controlled strong interactions between two fermionic elements -lithium-6 and potassium-40. This model system not only promises to provide new insights into solid-state physics but also shows intriguing analogies to the primordial substance right after the Big Bang.