Theory

Theory of Quantum Systems

The main scientific interest of the Theory of Quantum Systems group is related with the modeling of nano- and mesoscopic systems. The area of ​​interest includes unconventional states of matter in highly correlated electron systems (high-temperature superconductors and magic-angle twisted bilayer graphene), solid hydrogen phases (molecular and its metallization), as well as metallic nanofims and oxide interfaces.

Condensed Matter Theory and Quantum Dynamics Group (Institute of Science and Technology Austria)

How do isolated quantum systems behave when prepared in a highly non-equilibrium state? How can such quantum systems avoid the ubiquitous relaxation to a thermal equilibrium? How can we gain novel insights into properties of quantum matter using modern nonequilibrium probes? These and other open questions in the field of quantum non-equilibrium matter are the focus of the Serbyn group.

Theoretical Atomic, Molecular, and Optical Physics Group (Institute of Science and Technology Austria)

“The whole is greater than the sum of its parts.” Aristotle’s saying also holds true in many systems studied in quantum physics. Mikhail Lemeshko investigates how macroscopic quantum phenomena emerge in ensembles of atoms and molecules.

Computational Quantum Science Laboratory

The Computational Quantum Science Lab researches, develops, and promotes a broad range of advanced computational techniques to study quantum phenomena. Under the direction of Giuseppe Carleo, the methods developed at CQSL include innovative machine learning techniques to study Condensed Matter, Ultracold Atoms, Electronic Structure, as well as to characterize Quantum Devices. In addition to numerical approaches based on classical computers, novel algorithms to simulate quantum processes and suitable for near-term quantum devices are also being developed.

Pages