quantum computing

Dates: 
Friday, May 18, 2018
Registration deadline: 
Thursday, May 17, 2018

MSU Quantum Center and Skoltech’s Deep Quantum Labs team up to bring you Moscow’s first Quantum Hackathon.

Skolkovo Institute of Science and Technology now offers an educational track in 'quantum computer science'.

The selected candidate will be responsible for designing, building, training, and deploying machine learning models on Xanadu’s cutting-edge specialized quantum computing hardware. As part of our Quantum Machine Learning team, they will participate in multiple aspects of machine learning research and development targeted to near-term quantum devices. Other duties may include the training of traditional (non-quantum) machine learning models for comparison and benchmarking purposes.

Application deadline: 
Friday, May 18, 2018

The selected candidates will work with our established team of physicists and engineers to build our integrated photonic quantum computation platform based on the continuous variable (CV) approach. They will be involved in all aspects of the quantum hardware system at Xanadu’s lab: design of photonic components, construction of the apparatus, and carrying out key experiments. They will also be responsible for writing patents and peer-reviewed publications describing these devices and experiments. Successful applicants will have a proven track record of accomplishments in experimental quantum optics, having developed during their research careers cutting-edge techniques for the generation, control, and detection of non-classical light.

Application deadline: 
Saturday, April 21, 2018

Multiphoton quantum interference is one of the most intriguing phenomena in quantum physics, and is at the very heart of quantum computing and metrology technologies. However, the post-classical sensing and computational capabilities of multiphoton networks are yet far from being fully explored in practical experimental scenarios.

This theoretical project aims to develop scalable sensing and computational techniques based on the use of optimal linear interferometers with experimentally available photonic input states. The main idea is to exploit the full quantum information encoded in the interferometric evolution of the input photonic quantum states by employing novel measurement techniques (e.g. iterative interferometric dynamics, conditional dynamics, multiplexing and correlation measurements sensitive to the photonic inner and spatial modes).

Start date: 1 October 2018 or 1 February 2019
Application deadline: 7 May 2018
Supervisors: Dr V Tamma, Dr H Yu (Univeresity of Portsmouth), Prof G Adesso (University of Nottingham)

Application deadline: 
Monday, May 7, 2018