One of the problems plaguing classical communication is associated with what is known as the Byzantine agreement. In this problem, messages between three different parties are subject to faulty information. Quantum communication, though, has held the promise of solving this dilemma. But until now, it has been difficult to do so, even using entangled states.

ERATO-SORST Quantum Computation and Information Project invites applications for post-doctoral positions to conduct theoretical research on quantum computation and information science, including quantum cryptography, quantum algorithm, quantum communication, and other fundamental topics on quantum information, or to conduct experimental research on quantum information with photons.

Application deadline: 
Tuesday, April 29, 2008

An atomic clock that uses an aluminium atom to apply the logic of computers to the peculiarities of the quantum world now rivals the world's most accurate clock, based on a single mercury atom. Both clocks are at least 10 times more accurate than the current U.S. time standard.

Recently, quantum computing has been heralded as the new cool kid on the block. The point of quantum computing is that, during a calculation, the bits (called qubits) that are being manipulated are never in a definite one or zero state. Instead, they can be thought of as being both a one and a zero simultaneously, which allows a quantum computer to explore many solutions at the same time. The upshot is that, for a limited set of problems, quantum computers may offer a substantial speed up over normal computers.

Researchers have succeeded in building diodes that manipulate heat, which paves the way for thermal transistors and logic. Lei Wang and Baowen Li describe the emerging field of “phononics”.