Error message
- Deprecated function: TYPO3\PharStreamWrapper\Manager::initialize(): Implicitly marking parameter $resolver as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::initialize(): Implicitly marking parameter $collection as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::__construct(): Implicitly marking parameter $resolver as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::__construct(): Implicitly marking parameter $collection as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
Our group explores quantum fluids of light to study emergent many-body phenomena, such as superfluidity or turbulence. Quantum fluids of light can be experimentally realized within microscopic optical cavities, where the photons are trapped in intricate lattice or box potentials. With this experimental platform, we investigate novel topological physics, the interplay of quantum effects and dissipation, and quantum communication.
The QTE department at IMRE drives the development of long term capabilities aimed at the exploitation or quantum phenomena for new concept devices and translatable technologies. In particular, a major drive towards the second generation quantum devices harnessing the prowess of superposition and entanglement is in view. The QTE department also seeks to establish itself as a base for hosting and nurturing quantum scientists and engineers who are adept at translating quantum fundamentals into quantum advantage for industry applications.
We design and grow rare-earth doped crystals in which we aim at controlling optical and spin non-classical states. These materials, produced in the form of bulk and nanostructured single crystals, show extremely long-lived quantum states at low temperatures. This unique property in the solid-state enables us to address a broad range of applications, from quantum information processing and communication, to spectral analysis and medical imaging.
The Trapped Ion Quantum Technologies group led by Markus Hennrich is located at the Department of Physics at Stockholm University. Our main research focus is on using trapped ions for quantum computation, quantum simulation and quantum sensing applications. In particular, we are one of only two groups worldwide that have realised trapped Rydberg ions - a promising technology for speeding up trapped ion quantum computers.
We are a research group in Singapore under the umbrella of the Nanyang Technological University and the Centre for Quantum Technologies (CQT).
Our research focuses on two main experimental topics:
- Quantum sensors based on atromic systems. These include accelerometers, gravimeters and magnetometers.
- Quantum Circuits. We are exploring superconducting cisruits as well as atomic circuits (atomtronics) with a sepcial focus on quantum computing.
Modern quantum materials, such as unconventional superconductors, quantum spin liquids, and topological semimetals, host a wide variety of emergent states of matter. A grand experimental challenge is to determine the broken symmetries and topological structure of these states. The Modic group combines custom-built thermodynamic probes with state-of-the-art sample preparation to answer these questions.
The first quantum revolution yielded lasers and transistors more than half a century ago. These days, a second quantum revolution is unraveling, yielding new quantum-enhanced technologies for information processing, communications and sensing. The Hosten group is interested in developing new protocols and techniques in the sensing branch of these developments using cold atoms and light.
Quantum systems are fragile, constantly altered and disrupted by their environments. The Higginbotham group investigates electronic devices that are exceptions to this rule, aiming to understand the basic principles of their operations and develop future information-processing technology.
The Fink group’s research is positioned between quantum optics and mesoscopic condensed matter physics. The team studies quantum physics in electrical, mechanical, and optical chip-based devices with the goal to advance and integrate quantum technology for simulation, communication, metrology, and sensing.
It is impossible to picture modern life without thinking of the vast amount of microelectronic applications that surround us. However, such development has only become possible with the invention of the transistor in the 1950’s. This – back at that time – few centimeters large device, led to a technological revolution. Today the size of the transistors has been shrunk to 7nm where quantum physics comes into play.
Pages